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Abstract
We construct a noncommutative extension of the U(N) principal chiral model
with Wess–Zumino term and obtain an infinite set of local and non-local
conserved quantities for the model using the iterative procedure of Brezin
et al (1979 Phys. Lett. B 82 442). We also present the equivalent description as
a Lax formalism of the model. We expand the fields perturbatively and derive
zeroth- and first-order equations of motion, zero-curvature condition, iteration
method, Lax formalism, local and non-local conserved quantities.

PACS numbers: 11.10.Nx, 02.30.Ik

During the last 20 years, the subject of classical and quantum integrability of field theoretic
models has attracted a great interest [1–17]. The integrability of a field theoretic model is
guaranteed by the existence of an infinite number of local and non-local conserved quantities
[2–17]. These conserved quantities appear due to the fact that the field equations of these
models can be expressed as a zero-curvature condition for a given connection.

There is an increasing interest in noncommutative geometry [18] due to its applications
in particle physics, string theory, differential geometry etc [19–24]. Over the last few years,
there has been an increasing interest in a noncommutative2 extension of the field theories
[25–38]. The noncommutative version of the integrable field theoretic models is obtained

1 On study leave from PRD (PINSTECH) Islamabad, Pakistan.
2 The noncommutative spaces are defined by the noncommutativity of the coordinates, i.e.

[xi , xj ] = iθ ij ,

where θ ij known as deformation parameters are real constants.
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by replacing the ordinary product of fields in the action by their �-product [39]3. This
has shown that in general the noncommutativity of time variables leads to non-unitarity
and affects the causality of the theory [23, 24]. These noncommutative integrable models
reduce to ordinary models in the limit when the deformation parameter θ vanishes. The
noncommutative extension of integrable models such as the principal chiral model with and
without a Wess–Zumino term, Liouville equation, sine-Gordon equation, Korteweg–de Vries
(KdV) equation, Boussinesq equation, Kadomtsev Petviashvili (KP) equation, Sawada–Kotera
equation, nonlinear Schrödinger equation and Burgers equation have been studied by different
authors by exploiting different techniques [25–37]. The noncommutative sigma model, in
particular the U(N) principal chiral model, has been investigated in [26, 27] and some results
regarding their integrability have been obtained. The ultraviolet property of the Wess–Zumino–
Witten (WZW) model has been studied in [25].

In this paper we present a noncommutative extension of the U(N) principal chiral model
with the Wess–Zumino term (nc-PCWZM). We extend the iterative procedure of Brezin et al
[17] for the nc-PCWZM and derive a set of associated linear differential equations. It has
been shown that the set of linear differential equations is equivalent to a noncommutative Lax
formalism of the model. We derive a series of local and non-local conserved quantities. We
expand the fields perturbatively and obtain zeroth- and first-order equations of motion, zero-
curvature condition, Lax formalism, iterative procedure of Brezin et al, local and non-local
conserved quantities.

The action for the principal chiral model with Wess–Zumino term is [14]

β

2

∫
d2x Tr(∂+g

−1∂−g) +
β

3
κ

∫
d2x Tr(g−1 dg)3,

with the constraint

gg−1 = g−1g = 1.

This is referred to as the principal chiral Wess–Zumino model (PCWZM). The constants β

and κ are dimensionless and the field g(x±) is a function of the space-time coordinate x±. We
define conserved currents of PCWZM associated with the global symmetry of the model as

j̄± ≡ (1 ± κ)j± = −(1 ± κ)g−1 ∂±g.

The equation of motion and zero-curvature condition for the PCWZM are

∂−j̄+ + ∂+j̄− = 0, ∂−j̄+ − ∂+j̄− + [j̄+, j̄−] = 0,

and the above two equations give

∂−j̄+ = − 1
2 [j̄+, j̄−] = −∂+j̄−,

where [j̄+, j̄−] = j̄+j̄− − j̄−j̄+ is a commutator. The action for the principal chiral model
with the Wess–Zumino term in the noncommutative space is obtained by replacing ordinary

3 The product of two functions in a noncommutative space is defined as

(f � g) (x) = f (x)g(x) +
iθ ij

2
∂if (x)∂j g(x) + ϑ(θ2).

The following properties hold in a noncommutative space:

(f � g) � h = f � (g � h), f � I = f = I � f.
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product of the fields with �-product, i.e.

β

2

∫
d2x Tr(∂+g

−1 � ∂−g) +
β

3
κ

∫
d2x Tr(g−1 � dg)3

�,

with the constraint

g � g−1 = g−1 � g = 1.

This is referred to as the noncommutative principal chiral Wess–Zumino model (nc-PCWZM).
The field g(x±) is a function of the space-time coordinate x± in the noncommutative space.
The conserved currents for the nc-PCWZM are

j̄ �
± = (1 ± κ)j�

± = −(1 ± κ)g−1 � ∂±g.

The current conservation equation is

∂−j̄ �
+ + ∂+j̄

�
− = 0, (1)

and the zero-curvature condition is

∂−j̄ �
+ − ∂+j̄

�
− + [j̄ �

+, j̄
�
−]� = 0, (2)

where [j̄ �
+, j̄

�
−]� = j̄ �

+ � j̄ �
− − j̄ �

− � j̄ �
+ is the commutator in the noncommutative space. The

noncommutative equations (1) and (2) can be combined to give

∂−j̄ �
+ = − 1

2 [j̄ �
+, j̄

�
−]� = −∂+j̄

�
−. (3)

It is straightforward to derive an infinite set of local conserved quantities from equation (3).
We get a series of local conserved quantities

∂∓ Tr(j̄ �
±)n� = 0, (4)

where the numbers n are precisely the exponents of the Lie algebra of U(N). These conserved
quantities are local functions of fields. The term local in this context is used for those conserved
currents which depend on fields and their derivatives but not on their integrals. This should
not be confused with the intrinsic non-locality of a noncommutative field theory emerging due
to derivatives of fields to an infinite order, multiplied with the deformation parameter θ . This
intrinsic non-locality due to noncommutativity persists in all definitions of conserved currents.
In the ordinary commutative case, these conserved currents can be used to construct quantities
which are in involution with each other and their spins are exponents of the Lie algebra modulo
the coxter number [16]. It is, however, not straightforward to see in the noncommutative case,
whether the conserved quantities obtained from equation (4) are in involution or not. The
involution of the local conserved quantities can only be established if we know the Poisson
bracket current algebra of nc-PCWZM. The canonical formalism is quite involved and does
not allow us simply to write the noncommutative Poisson current algebra of the model.

In the nc-PCWZM, we also encounter with an infinite number of another type of conserved
currents which are non-local as they depend non-locally on fields; i.e. they depend on fields,
their derivatives and their integrals as well. In order to derive the non-local conserved currents,
we define a covariant derivative in noncommutative space-time acting on some scalar field χ ,
such that

D±χ = (1 ± κ)(∂±χ − j�
± � χ) ⇒ [D+,D−]� = 0, (5)
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where [D+,D−]� = D+ � D− − D− � D+. Now we suppose that there exist currents j̄
�(k)
± for

k = 1, 2, . . . , n which are conserved,

∂−j̄ �(k)
+ + ∂+j̄

�(k)
− = 0, (6)

such that

j̄
�(k)
± = ±∂±χ(k). (7)

Further we have defined the (k + 1)th current as

j̄
�(k+1)
± = D±χ(k)

= (1 ± κ)∂±χ(k) − j̄ �
± � χ(k). (8)

The current j̄
�(k+1)
± is also conserved which can be checked as follows:

∂−j̄ �(k+1)
+ + ∂+j̄

�(k+1)
− = (∂− � D+ + ∂+ � D−)χ(k)

= (D+ � ∂− + D− � ∂+)χ
(k)

= −D+ � j̄
�(k)
− + D− � j̄ �(k)

+

= −[D+,D−]�χ
(k−1)

= 0,

where D± � ∂± = ∂± � D±. We set j̄
�(1)
± = j̄ �

± , j̄
�(0)
± = 0 and χ(0) = 1. Note that the

conservation of the kth current implies the conservation of the (k + 1) th current and as a result
an infinite number of conserved currents are obtained through induction.

The non-local conserved quantities in noncommutative space are now defined as

Q̄�(k) =
∫ ∞

−∞
dy j̄

�(k)
0 (t, y). (9)

From equations (7) and (8), we get

j̄
�(k+1)
0 ≡ 1

2

(
j̄ �(k+1)

+ + j̄
�(k+1)
−

) = ∂0χ
(k) + κ∂1χ

(k) − j̄ �
0 � χ(k),

j̄
�(k+1)
1 ≡ 1

2

(
j̄ �(k+1)

+ − j̄
�(k+1)
−

) = ∂1χ
(k) + κ∂0χ

(k) − j̄ �
1 � χ(k),

where

χ(k)(t, y) =
∫ y

−∞
dz j̄

�(k)
0 (t, z).

The second current is a non-local current; it depends non-locally on fields,

j̄
�(2)
0 (t, y) = j̄ �

1(t, y) + κj̄ �
0(t, y) − j̄ �

0(t, y) �

∫ y

−∞
dz j̄ �

0(t, z). (10)

The first two conserved charges are

Q̄�(1) =
∫

dy j̄ �
0(t, y),

Q̄�(2) =
∫

dy

(
j̄ �

1(t, y) + κj̄ �
0(t, y) − j̄ �

0(t, y) �

∫ y

−∞
dz j̄ �

0(t, z)

)
.

(11)

These conserved quantities reduce to the conserved quantities obtained in [7] in the limit
when the deformation parameter approaches zero. In the limit when κ → 0 the conserved
quantities (11) reduce to the conserved quantities obtained for the noncommutative principal
chiral model (nc-PCM) in [26].

We now relate the iterative procedure outlined above to the noncommutative Lax
formalism of the nc-PCWZM. From equations (7) and (8), we have

∂±χ(k) = ±D±χ(k−1).



Conserved quantities in the noncommutative principal chiral model with Wess–Zumino term 9245

Multiplying by λk and summing from k = 1 to k = ∞, we obtain
∞∑

k=1

(λk∂±χ(k)) = ±
∞∑

k=1

(λkD±χ(k−1)).

As χ(0) = 1, the summation on the right-hand side can be extended to k = 0. The associated
linear system for the nc-PCWZM can be written as

∂±u(t, x; λ) = Ā
�(λ)
± � u(t, x; λ), (12)

where the noncommutative fields Ā
�(λ)
± are

Ā�(λ)
+ = −λ

1 − λ(1 + κ)
j̄ �

+, Ā�
− = λ

1 + λ(1 − κ)
j̄ �

−,

and u(t, x; λ) is expanded as

u(t, x; λ) =
∞∑

k=0

λkχ(k).

The compatibility condition of the linear system for the nc-PCWZM is the �-zero-curvature
condition [

∂+ − Ā�(λ)
+ , ∂− − Ā

�(λ)
−

]
�
≡ ∂−Ā�(λ)

+ − ∂+Ā
�(λ)
− +

[
Ā�(λ)

+ , Ā
�(λ)
−

]
�
= 0. (13)

Now we define Lax operators for the nc-PCWZM,

L̄
�(λ)
± = ∂± − Ā

�(λ)
± , (14)

obeying the following equations:

∂∓L̄
�(λ)
± = [

Ā
�(λ)
∓ , L̄

�(λ)
±

]
�
.

The associated linear system (12) can be re-expressed in terms of space-time coordinates as

∂0u(t, x; λ) = Ā
�(λ)
0 � u(t, x; λ), ∂1u(t, x; λ) = Ā

�(λ)
1 � u(t, x; λ), (15)

with the noncommutative fields Ā
�(λ)
0 and Ā

�(λ)
1 given by

Ā
�(λ)
0 = 1

2

(
Ā�(λ)

+ + Ā
�(λ)
−

)
, Ā

�(λ)
1 = 1

2

(
Ā�(λ)

+ − Ā
�(λ)
−

)
.

The associated Lax operator L̄
�(λ)
0 = ∂0 − Ā

�(λ)
0 obeys the following Lax equation

∂0L̄
�(λ)
1 = [

Ā
�(λ)
0 , L̄

�(λ)
1

]
�
.

This gives the time involution of the Lax operator related to the isospectral problem of the
model. We note that the Lax formalism can be generalized to its noncommutative version
without any constraints.

Let ĝ be a solution of equation of motion; therefore, the associated linear system for the
fields ĝ can be written as

∂±û(t, x; λ) = ˆ̄A�(λ)
± � û(t, x; λ),

where the noncommutative fields ˆ̄A�(λ)
± are given by

ˆ̄A�(λ)
+ = −λ

1 − λ(1 + κ)
ˆ̄j�

+,
ˆ̄A�
− = λ

1 + λ(1 − κ)
ˆ̄j�
−.

The compatibility condition of the above linear system is[
∂+ − ˆ̄A�(λ)

+ , ∂− − ˆ̄A�(λ)
−

]
�
≡ ∂− ˆ̄A�(λ)

+ − ∂+
ˆ̄A�(λ)
− +

[ ˆ̄A�(λ)
+ , ˆ̄A�(λ)

−
]
�
= 0. (16)
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The Darboux transformation relates the matrix function û(t, x; λ) and u(t, x; λ) by

û = u � v, (17)

and one can easily obtain

∂±v = ˆ̄A�(λ)
± � v − v � Ā

�(λ)
± . (18)

Equation (18) is also known as the Bäcklund transformation.
An infinite number of non-local conserved quantities can also be generated from the Lax

formalism of nc-PCWZM. We assume the spatial boundary conditions such that the currents
j̄ �

± vanish as x → ±∞. Equation (15) implies that u(t,∞; λ) are time independent. The
residual freedom in the solution for u(t,∞; λ) allows us to fix u(t,∞; λ) = 1 the unit matrix,
and then we are left with the time-independent matrix-valued function

Q̄�(λ) = u(t,∞; λ). (19)

Expanding Q̄�(λ) as power series in λ gives an infinite number of non-local conserved
quantities

Q̄�(λ) =
∞∑

k=o

λkQ̄�(k),
d

dt
Q̄�(k) = 0. (20)

For the explicit expressions of the non-local conserved quantities, we write (15) as

u(t, x; λ) = 1 − 1

2

∫ x

−∞
dy

(
Ā�(λ)

+ (t, y) − Ā
�(λ)
− (t, y)

)
� u(t, y; λ). (21)

When we expand the field u(t, x; λ) as power series in λ as

u(t, x; λ) =
∞∑

k=o

λkuk(t, x), (22)

and compare the coefficients of powers of λ, we get a series of conserved non-local currents,
which upon integration give non-local conserved quantities (11). In the commutative case,
the local conserved quantities based on the invariant tensors, all Poisson commute with each
other and with the non-local conserved quantities. The classical Poisson brackets of non-local
conserved quantities constitute classical Yangian symmetry [16]. In the noncommutative case
we expect similar results but once we know the Poisson bracket algebra of the currents j̄ �

±, we
shall be able to address the Poisson bracket algebra of these conserved quantities.

We now study the perturbative expansion of the field g(x±) and compute the equation
of motion and zero-curvature condition, Lax equation and the conserved quantities up to first
order in the deformation parameter θ . We define the group-valued field g(x±) by [38]

g = exp�

( iϕ

2

)
, and g−1 = exp�

(
− iϕ

2

)
,

with

g = exp�

( iϕ

2

)
= 1 +

i

1!

(ϕ

2

)
+

1

2!

( i

2

)2
ϕ � ϕ + · · · ,

where ϕ is in the Lie algebra of U(N). The components of Noether’s currents are

j̄ �
± = −(1 ± κ)g−1 � ∂±g,

or

j̄ �
± = −(1 ± κ)

i

2
∂±ϕ − (1 ± κ)2 θ

2!

( i

2

)2 (
∂2
±ϕ∂∓ϕ − ∂∓∂±ϕ∂±ϕ

)
+ ϑ(θ2). (23)
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We expand ϕ as a power series in θ

ϕ = ϕ[0] + θϕ[1], j̄ �
± = j̄

[0]
± + θ ˜̄j [1]

± , (24)

where

j̄
[0]
± = − i

2
(1 ± κ)∂±ϕ[0], j̄

[1]
± = − i

2
(1 ± κ)∂±ϕ[1],

˜̄j [1]
± = j̄

[1]
± − 1

2!

(
j̄

[0]
±±j̄

[0]
∓ − 1

2
j̄

[0]
∓ j̄

[0]2

± +
1

2
j̄

[0]
± j̄

[0]
∓ j̄

[0]
±

)
.

By substituting the value of j̄ �
± from equation (24) into equations of motion (1) and (2), we

obtain

∂−j̄ [0]
+ + ∂+j̄

[0]
− = 0,

∂− ˜̄j [1]
+ + ∂+

˜̄j [1]
− = 0,

∂−j̄ [0]
+ − ∂+j̄

[0]
− +

[
j̄ [0]

+ , j̄
[0]
−

] = 0,

∂− ˜̄j [1]
+ − ∂+

˜̄j [1]
− +

[ ˜̄j [1]
+ , j̄

[0]
−

]
+

[
j̄ [0]

+ , ˜̄j [1]
−

] = − i

2

(
j̄ [0]

++ j̄
[0]
−− + j̄

[0]
−−j̄ [0]

++

) − i

8

[
j̄ [0]

+ , j̄
[0]
−

]2
.

It is clear from the above equations that currents are conserved up to first order in θ but the
zero-curvature condition is spoiled. The perturbative expansion of the iterative construction is

j̄
[0](k+1)
± = D

[0]
± χ [0](k) ⇒ ∂−j̄ [0](k+1)

+ + ∂+j̄
[0](k+1)
− = 0,

˜̄j [1](k+1)
± = D

[0]
± χ [1](k) − D̃

[1]
± χ [0](k) ⇒ ∂− ˜̄j [1](k+1)

+ + ∂+
˜̄j [1](k+1)
− = 0,

where

D
[0]
± χ [1](k) = ∂±χ [1](k) − j̄

[0]
± χ [1](k),

D̃
[1]
± χ [0](k) = ˜̄j [1]

± χ [0](k) +
i

2

(
∂±j̄

[0]
± ∂∓ − ∂∓j̄

[0]
± ∂±

)
χ [0](k).

From this analysis, it is obvious that the conservation of the kth current implies the conservation
of the (k + 1)th current up to first order in θ .

The zero-curvature condition (13) for the fields Ā
�(λ)
± in the perturbative expansion

becomes

∂−Ā[0](λ)
+ − ∂+Ā

[0](λ)
− +

[
Ā[0](λ)

+ , Ā
[0](λ)
−

] = 0, (25)

∂− ˜̄A[1](λ)
+ − ∂+

˜̄A[1](λ)
− +

[ ˜̄A[1](λ)
+ , Ā

[0](λ)
−

]
+

[
Ā[0]

+ , ˜̄A[1](λ)
−

] = − i

2

(
Ā[0](λ)

++ Ā
[0](λ)
−− + Ā

[0](λ)
−− Ā[0](λ)

++

)

+
i

2

(
∂−Ā[0](λ)

+ ∂+Ā
[0](λ)
− + ∂+Ā

[0](λ)
− ∂−Ā[0](λ)

+

)
, (26)

where the fields Ā
[0](λ)
± and ˜̄A[1](λ)

± are given by

Ā[0](λ)
+ = −λ

1 − λ(1 + κ)
j̄ [0]

+ , Ā
[0]
− = λ

1 + λ(1 − κ)
j̄

[0]
− ,

˜̄A[1](λ)
+ = −λ

1 − λ(1 + κ)
˜̄j [1]
+ , ˜̄A[1]

− = λ

1 + λ(1 − κ)
˜̄j [1]
− .

The perturbative expansion of the linear system (12) is

∂±u[0](x, t; λ) = Ā
[0](λ)
± u[0](x, t; λ),

∂±u[1](x, t; λ) = Ā
[0](λ)
± u[1](x, t; λ)

+

(
˜̄A[1](λ)
± +

i

2

(
Ā

[0](λ)
±± Ā

[0](λ)
∓ − Ā

[0](λ)
±∓ Ā

[0](λ)
±

))
u[0](x, t; λ).
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The compatibility conditions of first and second equations in the above set of equations are
(25) and (26), respectively. The perturbative expansion of the Lax operators (14) is expressed
as

L̄
(λ)
± = L̄

[0](λ)
± + θ ˜̄L

[1](λ)

± ,

where L̄
[0](λ)
± and ˜̄L

[1](λ)

± are given by

L̄
[0](λ)
± = ∂± − Ā

[0](λ)
± , ˜̄L

[1](λ)

± = − ˜̄A[1](λ)
± ,

obeying the following equations:

∂∓L̄
[0](λ)
± = [

Ā
[0](λ)
∓ , L̄

[0](λ)
±

]
, (27)

∂∓ ˜̄L
[1](λ)

± = [
Ā

[0](λ)
∓ , ˜̄L

[1](λ)

±
]

+
[ ˜̄A[1](λ)

∓ , L̄
[0](λ)
±

] − i

2

(
L̄

[0](λ)
±± Ā

[0](λ)
∓∓ + Ā

[0](λ)
∓∓ L̄

[0](λ)
±±

)

+
i

2

(
∂∓L̄

[0](λ)
± ∂±Ā

[0](λ)
∓ + ∂±Ā

[0](λ)
∓ ∂∓L̄

[0](λ)
±

)
. (28)

The Lax equations (27) and (28) are equivalent to (25) and (26), respectively.
By substituting the value of j̄ �

± from equation (24) into equation (4), we find the following
zeroth-order and first-order local conservation laws,

∂∓ Tr
(
j̄

[0]2
±

) = 0,

∂∓ Tr
(
j̄

[0]
± ˜̄j [1]

±
) = 0,

∂∓ Tr
(
j̄

[0]3
±

) = 0,

∂∓ Tr
(
j̄

[0]2
± ˜̄j [1]

± − 1
4 j̄

[0]
± j̄

[0]
±±

[
j̄

[0]
± , j̄

[0]
∓

]
+ 1

4 j̄
[0]
±±j̄

[0]
±

[
j̄

[0]
± , j̄

[0]
∓

]) = 0,

∂∓ Tr
(
j̄

[0]4
±

) = 0,

∂∓ Tr
(
j̄

[0]3
± ˜̄j [1]

± − 1
8 j̄

[0]2
± j̄

[0]
±±

[
j̄

[0]
± , j̄

[0]
∓

]
+ 1

8 j̄
[0]
±±j̄

[0]2
±

[
j̄

[0]
± , j̄

[0]
∓

]) = 0.

Similarly, we can expand the iterative procedure perturbatively up to first order in the
deformation parameter θ . The first two non-local conserved currents are

j̄
(1)[0]
0 (t, y) = j̄

[0]
0 (t, y),

˜̄j (1)[1]
0 (t, y) = ˜̄j [1]

0 (t, y),

j̄
(2)[0]
0 (t, y) = j̄

[0]
1 (t, y) + κj̄

[0]
0 (t, y) − j̄

[0]
0 (t, y)

∫ y

−∞
j̄

[0]
0 (t, z) dz,

˜̄j (2)[1]
0 (t, y) = ˜̄j [1]

1 (t, y) + κ ˜̄j [1]
0 (t, y) − ˜̄j [1]

1 (t, y)

∫ y

−∞
j̄

[0]
0 (t, z) dz

− j̄
[0]
1 (t, y)

∫ y

−∞
˜̄j [1]
0 (t, z) dz + total derivative,

and the corresponding conserved quantities are

Q̄(1)[0] =
∫ ∞

−∞
j̄

[0]
0 (t, y) dy,

˜̄Q(1)[1] =
∫ ∞

−∞
˜̄j [1]
0 (t, y) dy,

Q̄(2)[0] =
∫ ∞

−∞

(
j̄

[0]
1 (t, y) + κj̄

[0]
0 (t, y) − j̄

[0]
0 (t, y)

∫ y

−∞
j̄

[0]
0 (t, z) dz

)
dy,
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˜̄Q(2)[1] =
∫ ∞

−∞

(
˜̄j [1]
1 (t, y) + κ ˜̄j [1]

0 (t, y) − ˜̄j [1]
1 (t, y)

∫ y

−∞
j̄

[0]
0 (t, z) dz

− j̄
[0]
1 (t, y)

∫ y

−∞
˜̄j [1]
0 (t, z) dz

)
dy.

Note that the first-order correction to the first non-local conserved quantity is an integral of
non-local function of the fields.

In summary, we have extended the U(N) principal chiral model with the Wess–Zumino
term in noncommutative space and have shown that the nc-PCWZM preserves its integrability
without any extra constraint. A set of nontrivial local and non-local conserved quantities are
calculated for the nc-PCWZM. We check the integrability of the model at a perturbative level
and write the zeroth- and first-order equations of motion, zero-curvature condition, local and
non-local conserved quantities. Similar noncommutative extension can also be investigated
for the supersymmetric principal chiral model and the WZW model. Another interesting
direction to pursue is to investigate �-Poisson bracket algebra of the currents of nc-PCWZM
and to check the involution of local conserved quantities.
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